نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای جغرافیا و برنامه ریزی شهری، دانشگاه اصفهان

2 استادیار مهندسی عمران،دانشگاه اصفهان، پژوهشگاه مهندسی بحران های طبیعی شاخص پژوه

3 استاد جغرافیا و برنامه ریزی شهری، دانشگاه اصفهان، پژوهشگاه مهندسی بحران های طبیعی شاخص پژوه

چکیده

مناطق شهری بسیاری به وسیله مخاطرات مرکب مورد تهدید قرار میگیرند که منجر به ایجاد آسیبهای جدی به انسانها ، ساختمانها و زیر ساختها میگردد. این مسأله متأثر از تحولات مرتبط مانند شهرنشینی، ساخت و سازها در مناطق با آسیبپذیری بالا میباشد. مهمترین هدف در این مطالعه، توسعه رویکردی شاخص محور میباشد که بستری را برای ارزیابی آسیبپذیری در خصوص مخاطرات مرکب (حریق در پی زلزله )فراهم مینماید. مدل شاخص محور ارائه شده، بر اساس انتخاب مشخصات رتبه هایی میباشد که شاخصهای آسیبپذیری کالبدی و انسانی را در محدوده مورد مطالعه مطرح مینماید. کاربرد مدل  PTVA[1]، در محدوده ای از شهر شیراز میباشد. تجزیهوتحلیلاطلاعاتجمعآوری شدهبر اساس نوع و هدف مطالعه باتوجهبهروشهای آماریومبتنیبرمشخصات ارزیابی ریسککمی با استفاده از نرم افزارهای  HAZUS& GIS و تجزیه و تحلیل آسیبپذیری معیار محور (RVI[2]) میباشد، یافتهها در برآورد سطوح آسیبپذیری کالبدی و انسانی(تلفات) نهایی حاکی از این میباشد که 69 ساختمان با مساحتی برابر 47523.64متر مربع از محدوده مورد مطالعه دارای سطح ریسک گسترده و کامل میباشند.



[1] - Papathoma Tsunami Vulnerability Assessment


[2] - Relative Vulnerability Index (RVI)
 

کلیدواژه‌ها

عنوان مقاله [English]

Assessing Physical Vulnerability of Multi-Hazard (Fire Following Earthquake),using an Indicator-Based Model (PTVA) in Urban Area

نویسندگان [English]

  • Leila Eshrati 1
  • Amir Mahmoodzadeh 2
  • Masoud Taghvaei 3

1 Ph.D Candidate of urban planning-, Research institute of Shakhespajouh, University of Esfahan, Esfahan, Iran

2 Assist .Prof, Dept .of civil engineer, Research institute of Shakhespajouh, University of Esfahan, Esfahan, Iran

3 Professor,Dept .of urban planning , Research institute of Shakhespajouh, University of Esfahan, Esfahan, Iran

چکیده [English]

 Extended Abstract           
Many built-up areas are threatened by multiple hazards which pose significant threats to humans, buildings and infrastructure. However, the analysis of the physical vulnerability towards multiple hazards is a field that still receives little attention, although vulnerability analysis and assessment can contribute significantly to risk reduction efforts. In this paper, an indicator-based vulnerability approach, the PTVA (Papathoma Tsunami Vulnerability Assessment), was further developed to be applicable in a multi-hazard context. The resulting multi-hazard version of the PTVA consists of four steps: the identification of the study area and relevant hazards as well as the acquisition of hazard information, the determination of vulnerability indicators and collection of data, the weighting of factors and vulnerability assessment, and finally, the consideration of hazard vulnerability. After the introduction of the newly developed methodology, a pilot application is carried out in a part of Shiraz municipality located in the Iran. In this case study the vulnerability of buildings and humans is assessed. The implementation of the methodology leads to reasonable results indicating the vulnerable buildings and supporting the priority setting of different end-users according to their objectives. The constraints of the presented methodology are: a) the fact that the method is not hazard-intensity specific, thus, vulnerability is measured in a rather qualitative and relative way, b) the high amount of data required for its performance, and c) Indicator-based vulnerability approaches are flexible and can be adjusted to the different hazards as well as to specific user needs.
 
Introduction
 Multi hazard pose a serious threat to human life. It can cause considerable damages. The evaluation of the expected losses due to multi hazard requires a risk assessment. Multi-hazard risk assessment allows the identification of the most endangered areas and suggests where further detailed studies have to be carried out.
 Aim: This study aims to give a new methodology for Multi-Hazard Risk Assessment that makes the comparability analysis of vulnerability easier for different hazards and accounts for possible triggering (domino) effects.
 
Methodology
Methods used in this paper are based on theoretical approach and documentation. Two types of hazards will be assessed, namely earthquake and fire following earthquake.
Statistical Analysis: Semi-quantitative and quantitative approach would assess risk rates at both regional and local levels.
 
Results and discussion
In this study, representation of a new methodology for multi hazards risk assessment includes determination of a model with parameters, consideration of the indicator-based pattern of vulnerability assessment that selected all of the relevant indicators and presented new classification of indicators based on comparison to different hazards and possible triggering (domino) effects. This means that a potential multi-hazard indicator could be higher than the simple aggregation of single risk indicators calculation.
 
Conclusion
 The focus is on establishing a general overview of the emerging issues, and indicating how hazard relations can be considered in multi-hazard studies. The hazard relations are identified and studied by means of a new method and the overlay of hazard areas to determine overlaps in final multi hazards map.

کلیدواژه‌ها [English]

  • Indicator-Based Model (PTVA)
  • Vulnerability assessment
  • fire following earthquake
  • Shiraz Municipality
1-مطالعات شهرداری شیراز (1383)، مرحله اول بازنگری طرح تفصیلی مناطق شیراز منطقه یک و شش شهرداری شیراز، انتشارات معاونت شهرسازی ومعماری، مهندسان مشاور فرنهاد،جلد دوم، ویرایش نخست، شیراز.
2-وزارت نیرو، (1384)، شرکت سهامی آب منطقه‌ای فارس، مطالعات مرحله اول لرزه‌خیزی و لرزه زمین ساخت، جلد اول، ویرایش نخست ،تیر ماه.
3-Barredo, J. (2009). Normalised ood losses in Europe: 1970-2006. Natural Hazards and Earth System Sciences 9: 97{104.
4-BBK(2010).Method  Fur Die Risk Analyse in Bevolkerungsschutz. Tech. rep., Bundesamt fur Bevolkerungsschutz und Katastrophenhilfe. URL BS,templateId=raw,property=publicationFile.pdf/Methode_Risikoanalyse-BS.pdf. Access 25 June7-2011.
5- Birkmann, J. (2007). Risk and vulnerability indicators at di_erent scales: applicability, usefulness and policy implications. Environmental Hazards 7(1): 20 { 31.
6- European Commission (2011). Risk assessment and mapping guidelines for disastermanagement. Commission staworking paper, European Union.
7- Fuchs, S. (2009a). Mountain hazards, vulnerability, and risk - a contribution to applied research on human-environment interaction. Habilitation, University of Innsbruck.
8- Hewitt, K. & Burton, I. (1971). Hazardousness of a Place: A Regional Ecology of Damaging Events. Toronto.
9- Granger, K., Jones, T., Laiba, M. & Scott, G. (1999). Community risk in Cairns:
a multi-hazards risk assessment. Tech. rep., Australian Geological Survey Organisation (AGSO). URL http://www.ga.gov.au/hazards/reports/cairns/. Access.
10- Kappes, M. (2011). MultiRISK: a Platform for Multi-Hazard Risk Analyses and Visualization Users’ Manual. Tech. rep., University of Vienna.
11- Kappes, M., Keiler, M. & Glade, T. (2010). From single- to multi-hazard risk analyses: a concept addressing emerging challenges. In Malet, J.-P., Glade, T. &Casagli, N. (Eds.), Mountain Risks: Bringing Science to Society. Proceedings of theInternational Conference, Florence. CERG Editions, Strasbourg, 351{356
12- Olfert, A., Greiving, S. & Batista, M. (2006). Regional multi-risk review, hazard
weighting and spatial planning response to risk - results from European case studies.
URL http://arkisto.gtk.fi/sp/SP42/9_regio.pdf. Access 10 March 2010.
13- Papathoma, M. & Dominey-Howes, D. (2003). Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Natural Hazards and Earth System Sciences 3: 733{747.
14-Papathoma-Kohle, M., Kappes, M., Keiler, M. & Glade, T. (2011). Physical vulnerability assessment for Alpine hazards - state of the art and future needs. Natural Hazards 58: 645{680.
15- Scawthorn, C., Eidinger, J. M., and Schiff, A. J. (2005). “Fire Following              Earthquake.” Technical Council on Lifeline Earthquake Engineering Monograph      No. 26, American Society of Civil Engineers, Reston, P 145-345.
16- Sperling, M., Berger, E., Mair, V., Bussadori, V. & Weber, F. (2007). Richtlinien
zur Erstellung der Gefahrenzonenplane (GZP) und zur Klassi_zierung des spezischen Risikos (KSR). Tech. rep., Autonome Provinz Bozen.
17- Tate, E., Cutter, S. & Berry, M. (2010). Integrated multihazard mapping.               Environment and Planning B: Planning and Design 37:P 646-663.
18- UN-ISDR (2009a). Global assessment report on disaster risk reduction. Tech. rep.,United Nations - International Strategy for Disaster Reduction. URL http://
www.preventionweb.net/english/hyogo/gar/report/index.php?id=9413. Access 1, September 2009.
19- UNEP (1992). Agenda 21. Tech. rep., United Nations Environment Programme. URL http://www.un.org/esa/dsd/agenda21/res_agenda21_07.shtml. Access 03 September2009.